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Abstract 
Artificial Immune Systems (AIS) combine a priori 
knowledge with the adapting capabilities of biological 
immune systems to provide a powerful alternative to 
currently available techniques for pattern recognition, 
modeling, design, and control. Immunology is the 
science of built-in defense mechanisms that are present 
in all living beings to protect against external attacks. A 
biological immune system can be thought of as a 
robust, adaptive system that is capable of dealing with 
an enormous variety of disturbances and uncertainties. 
Biological immune systems use a finite number of 
discrete "building blocks" to achieve this adaptiveness. 
These building blocks can be thought of as pieces of a 
puzzle, which must be put together in a specific way to 
neutralize, remove, or destroy each unique disturbance 
the system encounters. In this paper, we outline AIS 
models that are immediately applicable to aerospace 
problems and identify application areas that need 
further investigation.  

1 Introduction 

Biological immune systems use a complex of cells, 
molecules, and organs to overcome foreign invasion of 
living beings [1, 2]. In doing so, they have proven to be 
capable of performing several tasks, like pattern 
recognition, learning, detection, optimization, etc. 
Biological immune systems use a finite number of 
discrete detector “building blocks" derived from the 
DNA molecule to achieve these capabilities. These 
detector blocks, that are evolved, can be thought of as 
pieces of a puzzle that must be put together in a specific 
way to neutralize, remove, or destroy each unique 
disturbance the being encounters. One can attempt to 
define and learn these detector blocks for various 
engineering problems of interest.  The detector blocks 
can be processed using the features from the biological 
immune systems captured into computational models. 

A substantial amount of research in intelligent 
systems has concentrated on models of intelligence and 
learning as they occur in human beings.  This research 
often overlooks intelligent systems that are not 
explicitly related to the processes of human brains and 
minds. A good example from nature that is not 
anthropomorphic, but still exhibits high levels of 
intelligence,  is  the biological  immune  system.  The 

“This material is declared the work of the U. S. 
Government and is not subject to copyright 
protection in the United States”. 

immune system actively exploits memory (both long 
term and short term), executes strategies, divides tasks 
hierarchically, recognizes patterns, deals with 
unforeseen conditions, adapts to changing conditions, 
etc. However, its operation is markedly different from 
that of a neural or symbolic processing system.  

How does the immune system metaphor fit 
under aerospace applications? There are several 
problem domains in aerospace engineering that need 
complex solutions. For example, future needs of space 
exploration, homeland security, etc will need novel 
aircraft designs that are drastically different from 
currently available designs. Although these designs will 
be different, they will have to exploit the current 
knowledge bases that exist in aerodynamics, controls, 
etc.  To achieve these complex designs, one can define 
and learn computational (or information) building 
blocks, off-line and on-line, to design complex 
solutions for problems at hand. The building blocks are 
processed on-line for system adaptation. These building 
blocks can be identified using either learning or by 
incorporating a priori knowledge. Various immune 
system features such as clonal selection, bone marrow 
models, etc can be used to process these building blocks 
to arrive at good design choices. In addition, various 
AIS features can be combined to form a robust design 
tool for a wide variety of design problems.  

Another potential area will be security of 
computational systems that drive the multitude of 
functions on current and future aircraft and spacecraft. 
The dangers (such as computer viruses) are ill defined 
and approaches based on the immune system are ideally 
suited.  

There are several significant benefits of AIS 
approaches as compared to other artificial intelligence 
approaches currently being studied. These are: 

 
Vast a priori knowledge: There is a vast amount of 
knowledge available in the DNA molecule for arriving 
at solutions in the adaptive immunity. The idea of 
efficiently storing and using the a priori knowledge is a 
powerful metaphor.  
 
Rapid evolution from an acceptable solution to an 
optimal solution: In AIS, the search for a solution is 
modeled after the generation of an immune response 
wherein the optimal solution is achieved by rapid 
mutation and recombination of a genetic representation 
of the solution space. During the generation of the 
immune response, the system receives a continuous 
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feedback from the antigen-antibody complex resulting 
in a generation of an increasingly specific antibody 
response. This represents a learning paradigm that is 
used in AIS to develop solutions that continually 
increase in accuracy. 
 
Learning: The learning paradigm in AIS is based on the 
interaction between populations of antibodies and 
antigens. This provides a unique way of arriving at self-
organizing network structures. 
 
Uniqueness and variety: Each AIS response is unique 
implying an enormous number of possibilities in the 
available solutions. 
 
Representation transparency: It is easy to accommodate 
both objects and continuous numbers in the same 
representation enabling an easy way to mix various data 
types.  
 
Memory: The ability to create new solutions in a short 
time and inherent memory management are other 
attractive features of AIS. 
 
Other attractive features include:  

• Robust Recognition 
• Reinforcement learning 
• Distributed/parallel processing 
• Multi-layered 
• No centralized control 
• Self-tolerance     

2 Immune System-A Short Description 

The immune system is made up of two major divisions 
(see Figure 1), the innate immune system, and the 
adaptive immune system. The innate immune system is 
composed of static defenses such as skin and mucus 
that serve to separate the individual from potential 
threats. These are supplemented by pre-formed 
biochemical barriers and other defensive elements such 
as phagocytes that are widely distributed in the blood 
and body tissue. These also have the ability to signal 
the appearance of a threat and call in more of these pre-
formed elements. All of these elements are broadly 
reactive to general categories of problems and have a 
limited and predetermined set of responses. If the 
defenses of the innate immune system are breached, the 
adaptive immune system is called upon to produce a 
specific reaction to the infectious agent.  

The adaptive response is driven by the 
presence of the threat and those cells that nullify the 
threat the most effectively receive the strongest signal 
to replicate. The basic components of the immune 
system are white blood cells, or lymphocytes. 
Lymphocytes are produced by the bone marrow. Some 

lymphocytes only live for a few days and the bone 
marrow is constantly making new cells to replace the 
old ones in the blood. There are two major classes of 
lymphocytes: B-cells, produced in the bone marrow in 
the course of so-called clonal selection (described 
later), and T-cells, processed in the thymus. B-
lymphocytes secrete antibodies and some B-cells 
survive as memory cells. T-cells are concerned with 
cellular immunity: they function by interacting with 
other cells. T-cells divide into helper T-cells, that 
activate B-cells, and killer T-cells, that eliminate 
intracellular pathogens. Activated B-cells present pieces 
of the antigens to killer T-cells.  

The immune recognition is based on the 
complementarity between the binding region of the 
receptor and a portion of the antigen called epitope.  
Antibodies do not bind to the whole infectious agent, 
but rather to one of the many molecules on the agent's 
surface. This means that different antibodies can 
recognize a single antigen (See Figure 1). 

Figure 1. Immune System Functional Flow (Top); Layers 
of Defense in the Immune System (Middle); Immune 

Recognition (Bottom) 

Disease                       Recovery         No Disease 

Infection ReInfection 

 Innate  
 Immunity 

Adaptive 
Immunity 

Specific 
Immune 
Memory 

Phagocyte 

Adaptive immune  
response 

Lymphocytes 

Innate immune  
response 

Biochemical barriers 

Skin 

Pathogens 

  
Epitopes   

  

Antigen   

Ab Molecule 

Binding site 



3 
American Institute of Aeronautics and Astronautics 

Bone Marrow 
(Model) 

Negative 
Selection 

Immune 
Network   

 
Clonal 

Selection 
 

• a priori knowledge, 
• Simulation, System 

Models, etc. 

• Shape Space 
• Representation  

issues (Binary, etc) 

• Self-Nonself 
recognition  

• Discrimination partly 
in T-cells. 

• Definition of Antigen 
• Antigen-Antibody strength 
    (fitness) definition 

Antigen/Threat/Problem 

Memory 

Information 
available in 
the DNA 
Molecule. 

Figure 2. A system-level description of the Immune System Metaphor 

  Antibodies are essentially bifunctional 
molecules with a variable (V) region and a constant (C) 
region. It is the variation in the (V) domain that gives 
the immune system the power and speed in the 
adaptation process. Studies conducted to examine the 
antibody diversity produced during the immune 
response have demonstrated that the number of somatic 
mutations in the (V) region increases with time. This 
increase in somatic mutations correlates with an 
increase in antibody affinity for the antigen. 
Hypermutation (high levels of mutation), although an 
important factor in immune system maturation, by itself 
is not sufficient. Actually, assuming that the 
hypermutation mechanism is totally random, many of 
the mutations will destroy the affinity for the antigen. 
One way the immune system overcomes this is by 
selectively increasing the population of the high affinity 
antibodies. Thus, selection also plays a major role in 
determining high-affinity antibodies.  

3 Immune System Computational 
Models 

Figure 2 presents a system-level description of the 
immune system metaphor. There are several 
computational models that are based on the principles 
of immune systems. These are: 

• Bone marrow models 
• Negative-selection theorem 
• Clonal Selection Algorithm 
• Immune Network model 
• Immunized Computational Systems 

The assumption of usability of these models is preceded 
by the assumption that some understanding of the 

problem exists. This is akin to the vast source of 
information available to the immune system. Once this 
knowledge exists, one can use the immune sub systems 
(see Figure 2) individually or in combination.   

In the next subsections, we present details of 
these sub systems (and combinations of these 
subsystems) and problems in which they are suited for. 

3.1 Bone Marrow Models  

In the bone marrow models, the following ideas are 
encapsulated: 
• Gene libraries are used to create antibodies from 

the bone marrow (Gene examples are shown in 
Figure 3). 

• Antibody production is through a random 
concatenation of genes from the gene library 
(Figure 4) 

Binary Genes  
1*1* 
*01* 
 
Tree Genes 

C *

A 

B *

* *
 

Figure 3. Different gene representations 
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• Simple or complex libraries can be used 
• Antibodies produced are evaluated using a fitness 

function that defines the affinity of the designed 
antibody. 

 
Figure 4. Creation of solutions using the Gene Library 
 
The gene library contains pieces of a solution that has 
been predetermined using a priori knowledge. 
Representations could include simple Binary strings to 
more complicated neural chunks. Examples of two 
different types of Genes are shown in Figure 3. Figure 4 
presents the formation of the antibodies from the gene 
library. 

Once the solutions are produced from the 
library, they can be processed using standard genetic 
operators. 

3.2 Negative-selection Algorithm 

Forrest et al [8] developed this algorithm based on the 
principle of self-nonself discrimination in the immune 
system. This discrimination is achieved in part by T-
cells, which have receptors on their surface that can 
detect antigens. T-cells are generated by a random 
genetic rearrangement process and then they undergo a 
censoring in the thymus where the T-cells that react 
against self-proteins are destroyed. This algorithm is 
summarized as follows: 
 
• Define self as a collection S of strings of length L 

over a finite alphabet--Needs to be protected. 
• Generate a set R of detectors, each of which fails to 

match any string in S 
• Monitor S for changes by continually matching the 

detectors in R against S. If any detector is matched, 
then a change is known to have occurred. 
Candidate detectors can be generated randomly or 
in an intelligent fashion. 

 
Some of the applications of negative selection include: 
Color Image Segmentation [11]; Anomaly detection in 
time-series data [4, 6]; and Computer virus detection [5, 
9]. 

3.3 Immune Network Model  

In the immune network theory, originally proposed by 
Jerne [see references 1, 2, 20, & 21], antibodies 
recognize both antigens and other antibodies. 
Antibodies recognizing other antibodies form a network 
within the immune system. It is interesting to note that 
this theory does not require the presence of antigens to 
stimulate an immune response. The dynamics are 
governed by both the presence of antigens and 
antibodies. The figure below shows the basic principle 
of the immune network theory.  
 As the antibody matures, it recognizes the 
antigen with a higher degree of accuracy (see clonal 
selection principle below). Once the antigen is 
completely removed, the network between like- 
antibodies helps in keeping the immune system from 
extinguishing itself. A stable population is maintained 
as the memory that will be useful for future encounters 
of similar antigen.    
 This network of B-cells occurs due to the 
matching of the paratopes against the idiotopes on other 
B-cells. As shown in Figure 5, the cell (not shown) 
producing antibody #1 has a complementing idiotopes 
for antibody #2. Similarly antibody #2 has a 

complementing idiotope for cell #3. Same antibody 
could interact with more than one antibodies. This 
interaction actually produces a network of coupled 
stimulation-suppression phenomenon that maintains a 
stable equilibrium of good antibodies for future use.  
The increase or decrease (dynamics) of the 
concentration of a set of lymphocyte clones and the 
corresponding B-cells can be simulated using a non-
linear differential equation.  
 
Applications of Immune network models range from 
structural design [12] to fraud detection [3] to robotics 
[7].  
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3.4 Clonal Selection Algorithm 

A distinct difference between biological evolution and 
evolution based on clonal selection principle is the time 
scales. The goal of the clonal selection in the immune 
system evolution is to find the most suitable member of 
a population in very short periods of time. 

The clonal selection algorithm uses three basic 
operators: (1) selection, (2) cloning, and (3) maturation.  
The operators are implemented to perform the basic 
tasks of discovering and maturing good antibodies from 
the population of available solutions in an orchestrated 
fashion.  

The cloning operator is a process in which 
antibody with high performance receive 
correspondingly large numbers of copies in the new 
population of antibody.  In cloning, the antibody with 
high performance is given higher probability of 
reproduction. 

The maturation operator enhances the ability 
of the algorithm to tune the antibody in the population.  
Maturation is the occasional alteration of antibody at a 
particular part by using the method called 
hypermutation (high levels of mutation).  This 
procedure is designed to prevent the permanent loss of 
specific information in the antibody, and thus allows for 
the diversity of the antibody.  Although hypermutation 
is an important factor in immune system maturation, by 
itself is not sufficient.  The reason is that the 
hypermutation mechanism is totally random and result 
in destroying the affinity for the antigen. Therefore, the 
immune system must produce a large population of the 
high affinity antibodies to overcome the information 
loss.  

Together, the three operators of selection, 
cloning, and maturation provide an effective 
mechanism for searching complex spaces. An algorithm 
is outlined below.  
 

 

3.5 Immunized Computational System 

Immunized computational systems (ICS) incorporate 
bone marrow models along with clonal selection to 
reproduce the robustness and adaptability of a 
biological immune system. The concept of a gene is 
replaced with the concept of a building block (described 
later). Figure 6 presents a functional block diagram of 
the immunized computational system.  The system 
proposed by the author [13-17] has the following 
attributes: 
 
Known Solutions, etc.: The possible solutions contain 
both a base-line computational system (BCS) and a 
changeable computational system (CCS). The 
computational building blocks, defined later, are used 
to arrive at the changeable computational systems.  The 
BCS is designed to represent an average behavior of the 
solution (this could be known or approximated). Since 
this design is carried out off-line, any standard 
technique can be used for its synthesis. The base-line 
system is analogous to static portion of the antibodies. 
The CCS represents the variable region of the antibody 
and epitope equivalents.  This structure must be adapted 
on-line. To include the innate immunity equivalence, 

Clonal Selection Algorithm 
(1) Generate an antibody population either 

randomly or from a library of available 
solutions. 

(2) Select the n best performing antibody 
population  by evaluating a performance index. 

(3) Reproduce the n best individual by cloning the 
population. 

(4) Maturate the Pc antibodies by hypermutation. 
(5) Re-Select the best performing antibody 

population; 
(6) Stop if antibody generates satisfactory 

performance. Otherwise, start over from (1) 
using Pm (probability of mutation). 
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the changeable computational systems that are known a 
priori can be stored in look-up tables and can be used to 
produce the right antibody and CCS models.  Similar to 
the variable region of the antibodies, the changeable 
computational systems provide diversity to the 
immunized computational system. 
 
Clonal Selection (Exploratory System): The exploratory 
system is basically an evolutionary algorithm variant 
that uses recombination, selection, and mutation to 
arrive at a suitable CCS.  
 
Learning System: The learning system consists of a suit 
of learning paradigms to learn and store important 
computational building blocks that are not available a 
priori.   
 
Utility Measures, etc: This component provides the 
definition of what is a good solution for the problem at 
hand.  

3.5.1 Computational Building Blocks  
Computational building blocks are defined as segments 
of a computational system topology (for example, a 
neural network (NN) connection, or family of 
connections, along with its associated weights) that 
contributes in establishing a good mapping for a class 
of input-output characteristics.  Building blocks can be 
of different order. Examples of building blocks using 
neural connections are shown in Figure 7. The building 
blocks are specified using a universal representation 
scheme that uses a neuron as the basic processing 
element. Thus the order 1 building block consists of 
two neurons and the relationship between them. In the 
case of neural networks, the relationship is the 
connection strength and the neurons are characterized 
by their type (input, hidden, output), the type of 
aggregation, and activation functions. In the case of a 
fuzzy system, the relationship is AND, OR, or THEN, 
and the neurons represent the input or output variables 
with their associated parameters (such as the fuzzy 
membership function).  Determining important building 
blocks is problem dependent and a priori knowledge 
will guide this process.  

3.5.2 The Role of Evolutionary Algorithms  
Analogous to the DNA molecule, the computational 
building blocks need to be coded as a string of building 
blocks. An example of a neural network with the 
corresponding genetic representation is shown in Figure 
8. It may be noted that for a fuzzy system, the variables 
are the input or output variables with their associated 
fuzzy membership function (FMF) and other 
parameters (such as implication, aggregation, and 
defuzzification operators) and the relationship could be 

AND, OR, or THEN (indicates beginning of the 
consequent part of a rule). In the case of a neural 
network, this relationship will be in the form of the 
connection strength between two neurons. For on-line 
processing, a population of CCS is randomly 
constructed using juxtapositioning of the building 
blocks, forming a population of strings similar to the 
concept of the bone marrow model presented earlier 
(See figure 4). Next, we find the best string that will 
represent the CCS via clonal selection. Typical steps 
are as follows: 
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Figure 7. NN Computational Building Blocks 

 
• From a population of N strings, arrive at a near-

optimal CCS using recombination, mutation, and 
selection.  An on-line critic that can provide a fitness 
value for each candidate solution will decide 
optimality. Mutation takes place only on the 
parameters representing the topology (for example, 
weights for a NN) assuming a certain probability 
distribution of these parameters derived from the 
building blocks.  

• Ideally, it will be desirable to have a population of all 
the possible CCS synthesized from the building 
blocks. Since this is infeasible for most applications, 
we select a finite population of N strings and to 
ensure diversity, in every generation we introduce 
N/2 new strings drawn randomly from the available 
building blocks (other innovations are possible). 

• The CCS chain is then decoded and the resulting 
computational system is superimposed with that of 
the BCS. The resulting computational system is 
evaluated for its optimality. The BCS can also be one 
of few possibilities. Once a near-convergence system 
has been found, hyper-mutation (or another preferred 
local learning scheme) is applied to the parameters. 
In this step, no recombination is conducted, and no 
new strings are introduced. The selection operator is 
retained as it increases the number of high-affinity 
(or highly fit) CCS in the population. 
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 Figure 8.  Neural Network genetic coding. The cut and 
splice operators do not disrupt individual genes. Also, 
the mutation operator is used only on the connection 
strengths. 
 

 
Figure  9.  Evolutionary Algorithm Operators 
 
The actual on-line processing is conducted using clonal 
selection. The operators used for the recombination 
phase are cut, splice, and mutation.  The cut operation 
is conducted with a specified gene-wise cut probability, 
pk, such that the actual probability is pc=min{pk(L-
1),1}, where L is the current string length.  The splice 
operator concatenates two strings at random with 
specified probability, ps.  Mutation is conducted only on 
the connection strengths (weights or association) using 
a small mutation rate.  Figure 9 presents a sample 
sequence of operators for a computational system.  
After each cut and splice operation, the strings can 
grow longer or shorter.  Selection is carried out using a 
binary tournament selection scheme. In the 
hyper-mutation phase, the connection parameters are 
mutated using a probability of mutation phm. The 
probability distribution for the mutation operator is 
assumed to be Gaussian and is derived using building 
block data gathered off-line. 
 

The ICS model has been successfully applied to 
adaptive control problems in Reference [13-17]. 

4 Applications Domains 

In the past few years, AIS has been successfully applied 
to many different engineering problems. Some of these 
include:  
• Security and virus detection [5,9,24] 
• Fault identification [3] 
• Anomaly detection [4,6] 
• System ID [15] 
• Adaptive control [13-17] 
• Design [12] 
 

There are few issues that a user must address in 
getting ready to use any of the AIS computational 
models. These include: 
• Representational issues such as the choice of the 

alphabet (Binary, integer, tree structure, neural 
networks, etc) and proper coverage of the operating 
space.  

• Description of how antigens and antibodies interact 
in terms of an affinity measure. Affinity measures 
could be in terms of Euclidean distances, Hamming 
distances, or a more complex definition of their 
interaction via a fitness function. 

 
In the next few paragraphs, we outline areas in 
aerospace where the AIS paradigm is well suited as an 
alternative to existing techniques. 

4.1 Automated Design  

Aerospace systems of tomorrow will be complex and 
their design interdisciplinary. For example, design 
optimization conducted individually on subsystems 
such as wing, propulsion, and control will not integrate 
without extensive redesign. A unified design that 
integrates all facets of a system is difficult if not 
impossible to find using current optimization 
techniques. Traditional design approaches rely on cut-
and-try approaches adopted by designers that can be 
conducted very well using high performance 
computers. The bottleneck for computer 
implementation is the lack of (1) a universal 
representation of the design features and (2) a 
procedure for the design features to be cut-and-tried by 
a computer in an optimal way. There are other potential 
problems associated with computer-based automated 
design. These are: 
• Time required for a system simulation is large 

prohibiting use of full fidelity simulation of the 
problem. 
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Figure 10. A system-level description of Automated Design using AIS 

• Analytical derivatives of the objectives of design 
are frequently unavailable and numerical gradients 
are expensive to compute. 

• Design space consists of both continuous and/or 
discrete parameters 

• Design response surface is non-linear, 
discontinuous, or undefined in some regions. 
Presence of several local extrema is common in 
many applications. 

• Final design has to satisfy multiple objectives 
 
Although the choice of using AIS technologies for 
solving the design problems stated above is not obvious 
initially, a closer look reveals several similarities 
between the problem of counteracting an external threat 
and the problem of automated design. After all, 
biological immune system is very good at designing 
antibodies for various types of antigens. Figure 10 
presents a concept-level diagram of an AIS-based 
design system. The discussion in the next paragraphs 
point to various features of the system. 

To obtain a universal representation, we 
introduce the concept of a design building block. A 
design building block is a way to represent a feature as 
an input-output function with tunable parameters. These 
functions can be polynomials, pieces of a neural 
network, look-up tables, etc. These building blocks are 
identified first and a library of these building blocks is 
constructed. This library is continuously updated as 
more and more designs are created. This library is then 
used to construct design solutions for existing problems 
using clonal selection algorithm and other AIS features.    

We see several critical benefits of this approach to 
the design community. These are: 
• Library of Design building blocks: Library 

techniques are commonly used in integrated circuit 
(IC) design packages. This greatly reduces the 
number of combinations with which the designer 
must deal, thereby speeding up the search process. 

The design building blocks concept tailors this idea 
to the specific design. 

• Innovation is achieved by the use of evolutionary 
search with stochastic operators (Clonal selection). 
This greatly reduces the chance of reaching a local 
solution and solves many of the problems 
associated with gradient search techniques. 

• Long-term memory can be provided to the design 
package to remember good design solutions for 
later use via the use of the immune network theory 
and other micro-features of the immune system. 

 
Yoo and Hajela [12] have investigated the use of AIS 
techniques for multicriterion structural design. In their 
approach, clonal selection along with explicit 
definitions of antigens as specific points on the Pareto 
set was used to arrive at antibodies (good solutions) that 
satisfy the design criteria in a generalized way.   

4.2 Vehicle Health Management 

Vehicle Health Management (VHM) is the capability to 
efficiently perform checkout, testing and monitoring of 
air and space transportation vehicles, subsystems and 
components before, during and after operation. This 
includes the ability to perform timely status 
determination, diagnostics and prognostics. Areas of 
VHM in which the AIS paradigm is well suited are:  
• Sensor validation  
• Anomaly detection  
• Real-time and post-test event detection algorithms.  
• Virus protection for on-board computer systems 
 
Anomaly detection using AIS has been the most active 
research area related to AIS and VHM. Dasgupta et al 
[4, 6] have investigated the use of negative selection 
algorithms for anomaly detection with good success. In 
their study they have used both binary and real numbers 
to represent the antigen and antibody equivalents.  

One of the benefits of using an AIS approach 
is in the choice of choosing the detector sets based on 
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either, (a) normal behavior (where it is well known and 
the detector sets are small in size) or  (b) abnormal 
behavior (where normal behavior has too many 
characteristics to capture into detector sets). The normal 
behavior of a system is often characterized by a series 
of observations over time.  

The problem of detecting novelties, or 
anomalies, can be viewed as finding deviations of a 
characteristic property in the system. For computer 
scientists, the identification of computational viruses 
and network intrusions is considered one of the most 
important anomaly detection tasks. This problem will 
be prevalent in future aerospace systems in which 
computer networks will manage most of the tasks now 
currently done by the pilot and ground crew.   

4.3 Real-time maneuvering  

Typically, for tactical maneuvering, the pilot compares 
the commanded flight-path with that of the current 
aircraft and selects the maneuvers capable of achieving 
that command [23].  Pilots use their knowledge of 
aircraft capabilities and of near-optimal maneuvering 
strategies in order to select the necessary actions.  For 
unmanned flight or for highly automated man-in-the-
loop flight, an immunized computational system as 
outlined in section 3.5 could be used for tactical 
maneuvering. Figure 11 presents the immunized 
maneuver selection concept. A maneuver database, also 
representing the “experience” of a pilot, could be used 
to provide pre-canned or automatically generated, 
maneuvering elements and established sequences. 
Vehicle models can be used to provide the necessary 
predictive information for decision-making, 
representing the equivalent of a pilot’s “understanding” 
of the internal performance of the aircraft. Appropriate 
flight modes and targets would be sent to the autopilot 

system, when necessary to initiate the desired actions. 

5 Summary and Future Directions 

This paper presented several possible models of AIS 
that can be immediately used in some of the problem 
domains identified. AIS is a powerful alternative to 
many existing techniques in the arena of biologically 
inspired computing paradigms. More work is needed in 
certain core areas of the biological immune systems to 
fully exploit the IAS metaphor. The applications of the 
future will also rely on successful modeling of some of 
the underlying reasons for the success of the biological 
immune systems. One area of immediate need is the 
ability to arrive at a complete set of building blocks 
(completeness of the repertoire) that cover the 
operational space.  
 Attempting to prove that an available set of 
building blocks along with recombination can completely 
cover the operating space is a difficult task. Letting the 
size of this set to be "P" and with "N" total number of 
building blocks needed to define a complete system, we 
have PN number of possible systems. If for example 
P=20 and N=200, we have 20200 possible systems. At this 
point it is clear that a space of this size cannot be stored a 
priori. If we define "K" to be the number of building 
blocks that are correlated, we can see that for K=0, one 
can, with at most P*N mutations find the optimal system. 
Even this takes 4,000 evaluations. Now, if K=N, the 
extreme case, we have a nearly impossible task at hand. 
There are two things that make this picture not as bad as 
it seems: (a) for each building block, only a subset of the 
P values will be important; and (2) some of these can be 
pre-learned and stored as building blocks. Still some 
questions remain to be answered:  
• For a given problem, what is the average size of the 

building block necessary to effect a quick adaptation 

Figure 11. Tactical Maneuver Selection using AIS 
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process? 
• What role does the recombination play in alleviating 

the complexity in the search? 
• What problems exhibit a complexity catastrophe 

phenomenon? 
Another area that needs more understanding is the 
immune system’s ability to discriminate between self 
and non-self. The question in the engineering system 
context is one of discriminating normal behavior from 
an abnormal one.  
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